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Abstract. In his article [4], Visick gave an explicit expression of the
relation between the tensor products and the Hadamard products of two
n× n matrices. We will attempt to generalize Visick’s identity to cover
the products of finitely many of m× n matrices.
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1. Introduction

The work in this paper is based on a link between two important matrix products.
If A = (aij) is an m × n matrix and B = (bij) is an s × t matrix, then their tensor (or
Kronecker) product is the ms× nt matrix

A⊗B =




a11B · · · a1nB
... · · · ...

am1B · · · amnB


 .

If A = (aij) and B = (bij) are both m × n matrices, then their Hadamard product is an
m× n matrix of entry-wise products

A ◦B = (aijbij).

By means of the induction, the tensor product and the Hadamard product of any finitely
many matrices can be defined.

Let Cn be the n dimensional complex vector space and Cn×n be the vector space of all
n×n complex matrices. Recall that if A = (aij) is an n×n complex matrix, its adjoint A∗

has (i, j)th entry aji. Any A ∈ Cn×n satisfying A = A∗ is called self-adjoint or Hermitian.
An Hermitian matrix A is called
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• positive semidefinite (written A ≥ 0) if (Ax, x) ≥ 0 for all non-zero x ∈ Cn, and

• positive definite (written A > 0) if (Ax, x) > 0 for all non-zero x ∈ Cn.

We can partially order the Hermitian n × n matrices by defining A1 ≥ A2, which
means A1 − A2 ≥ 0. This is sometimes called the Loewner ordering.

Let Hm be the set of all m × m Hermitian matrices, and let H+
m be the set of all

positive definite m×m matrices. A linear map from Hn into Hm is said to be positive if
it transforms H+

n into H+
m. A positive linear map Φ from Hn into Hm is said to be unital

if Φ(In) = Im, where Ik is the k × k identity matrix. We know [1, Lemma 4, p.224] that
there is a unital positive linear map Φk from Hnk into Hn such that, for all n×n matrices
Ai (1 ≤ i ≤ k),

Φk

(
k∏

i=1

⊗Ai

)
=

k∏
i=1

◦Ai.

The interesting question is that if there exists a form of expression which can present
the linear map Φk.

In February 1997, Visick submitted an article [4], in which he gave an explicit expres-
sion of the selection matrix of the relation between the tensor products and the Hadamard
products of two n× n matrices. In order to look into Visick’s identity, it is necessary to
define, for each 1 ≤ i, j ≤ n, E

(n)
ij be the n×n matrix, which has a single 1 in the (i, j)th

position and zeros elsewhere. We then use these matrices to define an n2 × n matrix Pn

such that
P t

n =
[
E

(n)
11 E

(n)
22 . . . E(n)

nn

]
,

where P t
n is the transpose of Pn. Visick’s results is

Theorem 1 ([4], Theorem 1) Let A and B be m× n matrices. Then

A ◦B = P t
m(A⊗B)Pn.

In 1999, Mond and Pec̆arić generalized Visick identity to any finite many n×n matrices
case and gave the following statement [3, Lemma 2.2, p. 57]:

Theorem 2 Let Ai, i = 1, ..., k, be n × n matrices. There exists an nk × n selection
matrix P , such that P tP = I and

P t

(
k∏

i=1

⊗Ai

)
P =

k∏
i=1

◦Ai,

where P t is the transpose of P .
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In the result above, the authors didn’t give out the explicit expresion of the selection
matrix. In this article, our contribution is exhibiting the explicit expresion of the selection
matrix for any finite many m×n matrices about the relation between the tensor products
and Hadamard products, and we offer a natural proof, which is different from [3]. As
an application, we exhibit some new Hadamard inequalities, which are not follow simply
from the work of Visick.

2. Main Result

First we list some useful properties of the tensor product. These properties are mostly
known, and can be found in [2].

Lemma 1 ([2], p.15, 1) Let Ai, Bi be matrices such that AiBi (1 ≤ i ≤ k) are well
defined. Then (

k∏
i=1

⊗Ai

)(
k∏

i=1

⊗Bi

)
=

k∏
i=1

⊗(AiBi).

Lemma 2 ([2], p.15, 3) Let Ai be ni × ni matrix (1 ≤ i ≤ k). Then

(
k∏

i=1

⊗Ai

)∗

=
k∏

i=1

⊗A∗
i .

Let us introduce the terminology O(n) for the n×n matrix with all entries equal to 0,
and an nk × n matrix Pkn such that

P t
kn =

[
E

(n)
11 O(n) . . . O(n)E

(n)
22 O(n) . . . O(n) . . . O(n) . . . O(n)E(n)

nn

]
,

where there are
k−2∑
l=1

nl zero matrices O(n) between each pair of E
(n)
ii and E

(n)
i+1,i+1 (1 ≤ i ≤

n− 1).

The main result in this paper is the generalization of Visick’s identity:

Theorem 3 Suppose k ≥ 2. Let Ai (1 ≤ i ≤ k) be m× n matrices. Then

k∏
i=1

◦Ai = P t
km

(
k∏

i=1

⊗Ai

)
Pkn.

For proving theorem 3, we need the following lemma.
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Lemma 3 Let Ai = (a
(i)
st ) (1 ≤ i ≤ k) be n×m matrices. Then

a
(1)
s1t1a

(2)
s2t2 · · · a(k)

sktk
lies in the position of

(
k−1∑

l=1

nk−l(sl − 1) + sk,

k−1∑

l=1

mk−l(tl − 1) + tk

)
, (∗)

in the tensor product of
∏k

i=1⊗Ai. Conversely, that entry lies in the position (∗) of the

matrix
∏k

i=1⊗Ai must be a
(1)
s1t1a

(2)
s2t2 · · · a(k)

sktk
.

Proof. Using induction on k. When k = 2

A1 ⊗ A2 =




a
(1)
11 A2 · · · a

(1)
1mA2

... · · · ...

a
(1)
n1 A2 · · · a

(1)
nmA2




It is easy to check a
(1)
s1t1a

(2)
s2t2 lies in the position (n(s1−1)+s2, m(t1−1)+ t2) of the matrix

A1 ⊗ A2. Suppose lemma is true for k, that is a
(1)
s1t1a

(2)
s2t2 · · · a(k)

sktk
lies in the position

(
k−1∑

l=1

nk−l(sl − 1) + sk,

k−1∑

l=1

mk−l(tl − 1) + tk

)
.

By the definition of the tensor product of matrices, we know

k+1∏
i=1

⊗Ai =
(
a

(1)
s1t1 · · · a(k)

sktk
Ak+1

)
,

hence a
(1)
s1t1 · · · a(k)

sktk
a

(k+1)
sk+1tk+1

lies in the position of

(
n

k∑

l=1

nk−l(sl − 1) + sk+1,m

k∑

l=1

mk−l(tl − 1) + tk+1

)

=




(k+1)−1∑

l=1

n(k+1)−l(sl − 1) + sk+1,

(k+1)−1∑

l=1

m(k+1)−l(tl − 1) + tk+1




in the matrix
∏k+1

i=1 ⊗Ai. By the induction, the lemma is true for all positive integer k.
The converse is obvious.

Proof of theorem 3 Since P t
kn is an n×nk matrix,

∏k
i=1⊗Ai is an nk×mk matrix

and Pkm is an mk ×m matrix, P t
kn(

∏k
i=1⊗Ai)Pkm is an n ×m matrix. For proving the

equality in theorem 3, it is enough to check the entry in the position (i, j) of the matrix

P t
kn(

∏k
i=1⊗Ai)Pkm is the element a

(1)
ij · · · a(k)

ij .
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In the matrix P t
kn the ith row vector is

(0, · · · , 0, 1, 0, · · · , 0),

in which the number of 1 lies the position of P t
kn is

(
i, n(i− 1) + n(i− 1)

k−2∑

l=1

nl + i

)

=

(
i,

k−1∑

l=1

nl(i− 1) + i

)
=

(
i,

k−1∑

l=1

nk−l(i− 1) + i

)
.

The entries of the ith row in the matrix P t
kn(

∏k
i=1⊗Ai) are the entries of the (

k−1∑
l=1

nk−l(i−
1) + i)th row of the matrix

∏k
i=1⊗Ai. The entry in the position (i, j) of the matrix

P t
kn(

∏k
i=1⊗Ai)Pkm is the sum of the (

k−1∑
l=1

nk−l(i − 1) + i)th row of the matrix
∏k

i=1⊗Ai

multiples the jth column (0, · · · , 0, 1, 0, · · · , 0)T of the matrix Pkm, in which the number
of 1 lies the position is

(
k−1∑

l=1

ml(j − 1) + j, j

)
=

(
k−1∑

l=1

mk−l(j − 1) + j, j

)
.

Hence the entry in the position of the matrix P t
kn(

∏k
i=1⊗Ai)Pkm is the entry in the

position (
k−1∑

l=1

nk−l(i− 1) + i,

k−1∑

l=1

mk−l(j − 1) + j

)

of the matrix
∏k

i=1⊗Ai. By lemma 3, the entry is exactly a
(1)
ij · · · a(k)

ij .

3. Applications

To proceed further, we need properties of the Pkn’s which are analogous to properties
of the Pn’s proved in [4, Corollary 3]. We omit the straightforward proof.

Theorem 4 (i) For any k, P t
knPkn = In; and PknP

t
kn is a diagonal nk × nk matrix of

zeros and ones satisfying 0 ≤ PknP
t
kn ≤ Ink .

(ii) For any k, there exists an nk × (nk − n) matrix Qkn of zeros and ones such that
the block matrix [PknQkn] is an nk × nk permutation matrix and

P t
knQkn = 0, Qt

knQkn = Ink−n, and PknP
t
kn + QknQ

t
kn = Ink .

(iii) For any mk × nk matrix M,

0 ≤ (
P t

kmMPkn

) (
P t

kmMPkn

)∗ ≤ P t
kmMM∗Pkm.
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Corresponding Theorem 4 in [4], we have

Theorem 5 Let Ai (1 ≤ i ≤ k) be m× n matrices. Then

k∏
i=1

◦(AiA
∗
i ) =

(
k∏

i=1

◦Ai

)(
k∏

i=1

◦Ai

)∗

+

(
P t

km

(
k∏

i=1

⊗Ai

)
Qkn

)(
P t

km

(
k∏

i=1

⊗Ai

)
Qkn

)∗

.

Proof. From Lemma 1 and Lemma 2,

k∏
i=1

⊗ (AiA
∗
i ) =

(
k∏

i=1

⊗Ai

) (
k∏

i=1

⊗Ai

)∗

.

But by (ii) of Theorem 4,

k∏
i=1

⊗(AiA
∗
i ) =

(
k∏

i=1

⊗Ai

)
(
PknP t

kn + QknQ
t
kn

)
(

k∏
i=1

⊗Ai

)∗

=

(
k∏

i=1

⊗Ai

)
(
PknP t

kn

)
(

k∏
i=1

⊗Ai

)∗

+

(
k∏

i=1

⊗Ai

)
QknQ

t
kn

(
k∏

i=1

⊗Ai

)∗

.

Successive applications of Theorem 3 lead to

k∏
i=1

◦(AiA
∗
i ) = P t

km

(
k∏

i=1

⊗(AiA
∗
i )

)
Pkm

=

(
P t

km

(
k∏

i=1

⊗Ai

)
Pkn

)(
P t

km

(
k∏

i=1

⊗Ai

)
Pkn

)∗

+

(
P t

km

(
k∏

i=1

⊗Ai

)
Qkn

)(
Qt

kn

(
k∏

i=1

⊗Ai

)∗

Pkm

)

=

(
k∏

i=1

◦Ai

)(
k∏

i=1

◦Ai

)∗

+

(
P t

km

(
k∏

i=1

⊗Ai

)
Qkn

)(
P t

km

(
k∏

i=1

⊗Ai

)
Qkn

)∗

.

Visick [4, Theorem 11] proved that if A1 and A2 are m × n matrices and s ∈ [−1, 1],
then

A1A
∗
1 ◦ A2A

∗
2 + sA1A

∗
2 ◦ A2A

∗
1 ≥ (1 + s)(A1 ◦ A2)(A1 ◦ A2)

∗.

It is possible now to develop it from Theorem 5.
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Theorem 6 For any m × n matrices Ai (1 ≤ i ≤ k) and any real scalars α1, . . . , αk,
which are not all zeros, then

(α2
1 + · · ·+ α2

k)
k∏

i=1

◦(AiA
∗
i ) +

k−1∑
r=1

wr

k∏

l=1

◦(AlA
∗
(l+r)′)

≥ (α1 + · · ·+ αk)
2

(
k∏

i=1

◦Ai

)(
k∏

i=1

◦Ai

)∗

,

where wr =
k∑

l=1

αlα(l+r)′ and l + r ≡ (l + r)′(modk) with 0 ≤ (l + r)′ < k.

Proof. For real scalars α1, . . . , αk, which are not all zeros, let

M = α1(A1 ⊗ · · · ⊗ Ak) + α2(A2 ⊗ · · · ⊗ Ak ⊗ A1) + · · ·+ αk(Ak ⊗ A1 ⊗ · · · ⊗ Ak−1).

By Theorem 3 and the symmetry of the Hadamard product,

P t
kmMPkn = (α1 + · · ·+ αk)

k∏
i=1

◦Ai,

and hence, using (iii) of Theorem 4,

P t
kmMM∗Pkm ≥ (

P t
kmMPkn

) (
P t

kmMPkn

)∗

= (α1 + · · ·+ αk)
2

(
k∏

i=1

◦Ai

)(
k∏

i=1

◦Ai

)∗

.

On the other hand, taking indices modk, Lemma 1 and Lemma 2 give

MM∗ =

(
k∑

i=1

αi(Ai ⊗ Ai+1 ⊗ · · · ⊗ Ai−1)

) (
k∑

j=1

αj(Aj ⊗ Aj+1 ⊗ · · · ⊗ Aj−1)

)∗

=

(
k∑

i=1

αi(Ai ⊗ Ai+1 ⊗ · · · ⊗ Ai−1)

) (
k∑

j=1

αj(A
∗
j ⊗ A∗

j+1 ⊗ · · · ⊗ A∗
j−1)

)

= α2
1(A1A

∗
1 ⊗ · · · ⊗ AkA

∗
k) + · · ·+ α2

k(AkA
∗
k ⊗ A1A

∗
1 ⊗ · · · ⊗ Ak−1A

∗
k−1)

+
∑

i6=j

αiαj(AiA
∗
j ⊗ Ai+1A

∗
j+1 ⊗ · · · ⊗ Ai−1A

∗
j−1).

Now another application of Theorem 3 and the commutativity of the Hadamard product
yield
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P t
kmMM∗Pkm = (α2

1 + · · ·+ α2
k)

k∏
i=1

◦(AiA
∗
i ) +

k−1∑
r=1

wr

k∏

l=1

◦(AlA
∗
(l+r)′),

where wr =
k∑

l=1

αlα(l+r)′ and l + r ≡ (l + r)′(modk) with 0 ≤ (l + r)′ < k. Consequently,

(α2
1 + · · ·+ α2

k)
k∏

i=1

◦(AiA
∗
i ) +

k−1∑
r=1

wr

k∏

l=1

◦(AlA
∗
(l+r)′)

≥ (α1 + · · ·+ αk)
2

(
k∏

i=1

◦Ai

)(
k∏

i=1

◦Ai

)∗

.

We start by examining some special cases briefly in order to see, firstly, if we set α1 = 1
and α2 = · · · = αk = 0, Theorem 6 really is an extension of

k∏
i=1

◦(AiA
∗
i ) ≥

(
k∏

i=1

◦Ai

)(
k∏

i=1

◦Ai

)∗

.

Next, we recover the result [4, Theorem 11] which we mentioned before the statement
of Theorem 6. Let k = 2, and for every s ∈ [−1, 1], let α1 = 1 and α2 = α be a real
solution of the equation

sα2 − 2α + s = 0,

so that

s =
2α

1 + α2
.

Then Theorem 6 asserts that

(1 + α2)(A1A
∗
1) ◦ (A2A

∗
2) + 2α (A1A

∗
2) ◦ (A2A

∗
1) ≥ (1 + α)2(A1 ◦ A2)(A1 ◦ A2)

∗.

A simplification gives

(A1A
∗
1) ◦ (A2A

∗
2) + s(A1A

∗
2) ◦ (A2A

∗
1) ≥ (1 + s)(A1 ◦ A2)(A1 ◦ A2)

∗.

Finally, we present an attractive inequality for three matrices. This does not follow
simply from the work of Visick. If k = 3 and α1 = 1, α2 = α3 = −1

2
, Theorem 6 asserts

that

(A1A
∗
1) ◦ (A2A

∗
2) ◦ (A3A

∗
3) ≥

1

2
[(A1A

∗
2) ◦ (A2A

∗
3) ◦ (A3A

∗
1) + (A2A

∗
1) ◦ (A3A

∗
2) ◦ (A1A

∗
3)].
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